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In order to solve a complicated problem one must use the knowledge from differ-

ent domains. Therefore, if we want to automatize the solution of these problems,

we have to help the knowledge-based systems that correspond to these domains

cooperate, that is, communicate facts and conclusions to each other in the pro-

cess of decision making. One of the main obstacles to such cooperation is the fact

that different intelligent systems use different methods of knowledge acquisition

and different methods and formalisms for uncertainty representation. So we need

an interface f, "translating" the values x, y, which represent uncertainty of the

expens' knowledge in one system, into the values fix), f(y) appropriate for

another one.

In the present report we formulate the problem of designing such an inter-

face as a mathematical problem, and solve it. We show that the interface must be

fractionally linear: fix) - (ax + b)/(cx + d).

WHY IT IS NECESSARY TO COOPERATE

In order to solve complicated problems one must often use the knowledge

from different domains. Therefore, if we want to automatize the solution of

these problems, we must help the computer-based systems that correspond to

these domains cooperate, that is, communicate facts, conclusions, and solu-

tions to each other in the process of decision making.

DIFFERENT UNCERTAINTY REPRESENTATIONS--ONE
OF THE MAIN OBSTACLES TO COOPERATION

The cooperating systems must be able to use each other's facts and conclu-

sions. The knowledge itself is normally represented in knowledge bases in a
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more or less standard form, close to the language of mathematical logic.

However, working intelligent systems use several different methods (see,

e.g., a survey by Smets et al., 1988) of representing uncertainty of the

corresponding statements: fuzzy logic, certainty values formalism, probabi-

listic reasoning, Dempster-Shafer formalism, etc. All these methods are

based on representing the experts' uncertainty by real numbers--usually

from the interval [0, 1]. The value 1 assigned to some statement S means that

an expert is absolutely sure about this statement, and the value of 0 that the

expert is absolutely sure that S is false (some systems, such as MYCIN

[Shortliffe, 1976], use different intervals, like [-1, 1] instead of [0, 1].

However, the operations with these values are essentially different: for ex-

ample, if to A and B we assign the values a and b, then to A v B we assign

max(a, b) in fuzzy logic, a + b - ab in probabilistic reasoning, and a

complicated expression in MYCIN. This choice of operations is vitally im-

portant (and depends on the domain): in MYCIN, for example, it turned out

that diagnostic efficiency essentially decreases if we change the formulas for

operating with uncertainty (Shordiffe, 1976). Therefore we cannot simply

place the statements from one knowledge base into another and derive con-

clusions: we need some interface allowing us to transform the uncertainty

values from one knowledge base into another.

Moreover, even if the knowledge bases use the same formalism for

dealing with the certainty values of their statements, they can be based on

different knowledge acquisition algorithms, so the same level of the expert's

uncertainty, corresponding to the same word like "for sure," can be repre-

sented by essentially different numbers in these bases. If we, for example,

transfer to a knowledge base in which 0.7 means "for sure" a statement

from another knowledge base in which the same value 0.7 means "maybe,"

we make this first system mistakenly understand this external statement as

highly realiable, whereas in reality it is only hypothetic. Clearly we need an

interface to transform certainty values.

THE CHOICE OF THE UNCERTAINTY-TRANSFORMING

INTERFACE AS A MATHEMATICAL PROBLEM:

SEMIFORMAL MOTIVATION

The desired interface should be a program (or, in mathematical terms, a

function) transforming the certainty value of a statement in one system into a

value appropriate for some other system.

Because there are many different types of uncertainty representations, it
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is reasonable to construct a universal interface that can be adjusted to arbi-

trary pair by an appropriate choice of its parameters. In order to represent

this fact mathematically let us denote the number of parameters by n. For

every choice of these parameters we have a function f(x) transforming real

values into real values, so the whole universal interface corresponds to an n-

dimensional family of real-valued functions of real argument (n-dimensional

means that there are n parameters, by fixing which we determine the func-

tion uniquely).

In order to construct such a family F let us enumerate the properties that

we want to be fulfilled.

(1) If x -- f(x) is an efficient transformation of uncertainty values from

a system A to some other system B, and y -- g(y) is an efficient transforma-

tion from B to some C, then if we want to translate from A directly to C, the

result of translating x will be gOt(x)). Therefore it is necessary to demand

that this composition function x -- g(f(x)) belong to the same family of

functions (i.e., can be obtained from the universal interface program by

fixing some parameters). In mathematical terms this means that the desired

family F must be closed under composition.

(2) Suppose x -- f(x) is an efficient transformation from A to B. Then if

we want to transform the uncertainty values from B to A, to every value y in

B we must put into correspondence a value x in A such that f(x) - y.

This correspondence y -- x is called in mathematics an inverse function

to f. So the next demand is that for every function f from F the inverse

function must also belong to F.

These two demands mean that the family F must be closed under com-

position and inverse function operation, or, in mathematical terms, that F

must be a group with respect to composition. Such groups are called trans-

formation groups.

(3) For some pairs of acquisition procedures we can calculate the best

interface transformation. In these cases it is necessary to demand that the

desired family F contain these transformations. For example, a natural mea-

sure of the experts' uncertainty in some statement S is the percentage

p(S) - n(s)/N of those experts who think that S is true. If all the experts

believe in S, this value is 1 (= 100%), if half, it is 0.5 (50%) etc.

Knowledge engineers want the system to include the knowledge of the

whole scientific community, so they ask as many experts as possible. But

asking too many experts leads to the following negative phenomenon: in the

presence of the most respected professors--Nobel Prize winners and the

like--some less self-confident experts are not sufficiently brave to express

....... O.,_NAL
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their own opinions, so they will either say nothing or follow the opinion of

the majority.

How does their presence influence the percentage values? Let us denote

by N the initial number of experts, by n(S) the number of those who believe

in S, and by M the number of shy experts added. Initially, p = n(s)/N. After

we add to our experts sample M experts who do not answer anything when

asked about S the number of experts who believe in S is still n(S), so the

ratio expressing the uncertainty values is now p' ,, n(S)/(N + M) - cp,

where c - N/(M + iV). When we added the experts who give the same

answers as the majority of N renowned experts, we get n(S) + M experts

saying that S is true, so the uncertainty value is now p" = (n(S) + M)/

(N + M) = (Np + M)/(N + M). If we need an interface transforming

the values obtained without the new experts into the values obtained with

them, then the corresponding transformation will be a linear function

p -- ap + b, where a and b are constants (independent of p). If we add M

"silent" experts and M' "conformists" (who vote as the majority), then we

get a two-parametric (in mathematical terms two-dimensional) family of lin-

ear functions p--ap + b.

So the desired family F must contain a two-parametric family of linear

functions. We arrive at the following mathematical problem.

THE CHOICE OF INTERFACES: FORMULATION AND

SOLUTION OF THE MATHEMATICAL PROBLEM

Formulation. Find a finite-dimensional group of transformation R -- R

(i.e., real-values functions of real argument) that includes a two-parametric

family of linear functions.

Comment on the Solution. The problem of classifying all possible trans-

formation groups of an n-dimensional space R", n - 1,2,3,..., that include

a sufficiently big family of linear transformations, was first formulated by

Norbert Wiener (see, e.g., Wiener, 1962). His hypothesis was confirmed in

Guillemin and Sternberg (1964) and Singer and Sternberg (1965). It turned

out that for n - 1 the only possible groups are the group L of all linear

transformations and the group FL of all fractionally linear transformations

x -- (ax + b)/(cx + d) (the simplified proof for the one-dimensional case is

given in Kreinovich, 1987; see also Kreinovich, 1990). In general, the rela-

tionship between the uncertainty values assigned to one and the same word in

different acquisition procedures (and thus in different knowledge-based sys-
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terns) cannot be expressed by a linear function, so the desired family of the

interface transformations is FL.

Solution. The desired universal interface must implement fractionally-

linear functions x -- (ax + b)/(cx + d) to transform uncertainty values of

one knowledge base into the values appropriate for some other system,

where the parameters a, b. c, d must be adjusted to these two systems.

Comment. The concrete values of a-d can be obtained, for example, as

follows: take four arbitrary statements S_, $2, $3, $4, estimate their uncer-

tainty values in the first intelligent system (by means of the procedure used

to create that system), and obtain Pt-P4; then do the same with the second

system, obtaining q_-q4, and then estimate a-d by solving the system of four

equations

q_ . api + b i - 1,2,3,4
cpi + d

with four unknowns a-d. This system can be reduced to a linear one, if we

multiply both sides by the denominator:

(cp_ + d)q, - ap_ + b.

APPLICATIONS

One of the most widespread methods of solving complicated problems is that

of computer simulation. This is practically the only way to get predictions

about global ecology, complicated transportation systems, military conflicts,

and the line. If all our knowledge is already expressed in probabilistic terms,

we can apply Monte Carlo methods. But normally the essential part of our

knowledge is expressed in fuzzy terms, so that the corresponding knowledge

bases use nonprobabilistic formalisms for knowledge representation. How to

use this additional knowledge? If we simply interpret the uncertainty values

as probabilities and apply Monte Carlo methods, the results are often far

from reality (and always not justified, hence not convincing).

Our results show that in this case we must apply an appropriate fraction-

ally linear transformation. Application of this idea to the computer simula-

tion of an automated manufacturing unit has allowed us to make essentially

better predictions (Kozlenko and Kreinovich, 1986).
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